2024 SUMMARY

COMMUNITY MEDICINE

DR. AHMAD AL-QAWASMI

Biostatistics

- Variable: a characteristic of interest that can have different values (measured, record, analyzed)
 - > Independent variable is the presumed <u>cause</u>, and <u>dependent</u> variable is the presumed <u>effect</u>
 - \checkmark Smoking is independent variable \rightarrow Lung cancer is a dependent variable
 - \checkmark Sugar pill placebo is independent variable \rightarrow Unchanged BP is a dependent variable
- A quantitative variable (can be measured), qualitative variable (not measured but sorted)

1. Qualitative (categorical) variables

- Nominal: such as sex, exam result, blood group, eye color, ethnicity, marital stats, housing style
 - > Nominal level of measurement: <u>Cannot perform meaningful operation</u> on this data
 - > Involve names, labels or qualities, car type, colors, zip code, religion
 - > The *lowest level of measurement*, which is a qualitative classification with no quantitative value
 - > Appropriate statistics: mode, frequency BUT we cannot use mean
- Ordinal: such as response to treatment (poor, fair, good), severity of disease (mild, moderate, severe) and income status (low, middle, high), where the ordinal level of measurements:
 - > Indicates order not exact quantity (exact differences between ranks <u>cannot</u> be specified)
 - > Involves using numbers to designate ordering on an attribute
 - > Appropriate statistics: mode, frequency and median BUT we cannot use mean

2. Quantitative (numerical) variables

- Discrete: number of family members, heart beats or hospital admissions in a day
- Continuous (<u>no gap</u> between possible values): Height, weight, age, BP, serum cholesterol, BMI
 - > Continuous data can be transformed into classification in qualitative data
- Interval level of Measurement: Data is placed in meaningful intervals and order (ranked)
 - <u>Real (actual)</u> numbers and the difference between the ranks can be specified (numbers indicate both the ordering and the distance between the values)
 - > Appropriate statistics: mode, frequency, median and mean
 - > Example: Temperature, year of birth, order of racers
- Ratio level of Measurement: Is the highest level where data can be categorized, ranked and the difference between ranks can be specified and has a zero point (total absence of the quantity)
 - > Age, weight, height, pulse rate, time

•

- > Appropriate statistics: mode, frequency, median and mean
- The goal of the researcher is to use the highest level of measurement possible

	Category Names	Meaningful Order	Equal Distance	True Zero & Ratios
Nominal	\checkmark	-	_	-
Ordinal	\checkmark	\checkmark	-	-
Interval	\checkmark	\checkmark	\checkmark	-
Ratio	\checkmark	\checkmark	\checkmark	\checkmark

Provides:	Nominal	Ordinal	Interval	Ratio
The "order" of values is known		v	~	v
"Counts," aka "Frequency of Distribution"	~	~	~	~
Mode	~	~	~	~
Median		~	v	~
Mean			~	~
Can quantify the difference between each value			~	~
Can add or subtract values			~	~
Can multiple and divide values				~
Has "true zero"				~

- **Descriptive Statistics:** makes data more understandable by organizing, summarizing, and displaying data
- Inferential Statistics: <u>Reports the confidence</u> of a sample statistic in predicting a population parameter
 - Parameter: A descriptive measure computed from population data (population mean μ, standard deviation σ, variance σ²)
 - > Statistic: computed from sample data (sample mean x and standard deviation s, variance s^2)

Aspect	Descriptive Statistics	Inferential Statistics	
Purpose	Describe data characteristics	Make predictions and generalizations	
Data focus	Summarizes sample data only	Draws conclusions about a population	
Technique used	Measures of central tendency and	Hypothesis testing, regression,	
	dispersion	confidence intervals	
Interpretation	Limited to known data	Extends findings to unknown data	

Descriptive Measures

- **Measures of location** include measures of central tendency (Mean, median, mode) and non-central tendency (Quantiles, quartiles, quintiles, percentiles)
 - > Measure of central tendency help find the approximate center of the dataset
 - > Mean, mode, median are all considered as average
- Measures of central tendency
- Mean: the sum of all values divided by the number of observations.
 - > Generally, not part of the data set and Unique for a given dataset
 - Sensitive to extreme values

• Median: the middle value when data is arranged in ascending order

- > If is odd number of values, the median is the middle value
- > If is even number of values, the median is the average of the two middle values
- > Not affected by extreme values, and may be part of the data set
- Mode: the most frequently occurring value in a dataset.
 - > A dataset can have no mode, 1 mode (unimodal), 2 modes (bimodal), multiple modes (multimodal)
 - > It is always part of the data set, and not affected by extreme values

Shapes of Distributions

- Normal Distribution (Bell-shaped curve): Symmetrical (mean = median = mode)
- Right (Positively) Skewed: Long right tail (Mean > Median > Mode)
 - > Mean overestimates the most common values
 - Example: <u>Income distribution</u>
- Left (Negatively) Skewed: Long left tail (Mean < Median < Mode)
 - > Mean <u>underestimates</u> the most common values
 - Example: <u>Exam scores</u>

• The median is a more robust statistic than mean in the presence of extreme values and skewed

Raw Data: Data collected

Organized Data: Arranged in

ascending/descending order

without processing

- Measures of Non-Central Location: summarize data by dividing it into equal parts
- Quartiles: Divide the data into four equal parts
 - > Q1 (First Quartile): 25% of observations are below it
 - > Q2 (Second Quartile, <u>Median</u>): 50% of observations are below it
 - > Q3 (Third Quartile): 75% of observations are below it
- Quintiles: Divide data into five equal parts
- Deciles: Divide data into ten equal parts.
- Percentiles: Divide data into 100 equal parts.
 - > 25^{th} percentile = Q1, 50^{th} percentile = Q2 (median), 75^{th} percentile = Q3.
- Measures of Dispersion are commonly used to measure how spread out the data is, and include:
- Range: The difference between the <u>largest and smallest</u> values
 - > Pros: Easy to calculate
 - > Cons: Affected by extreme values
- Interquartile Range (IQR): Difference between Q3 and Q1
 - > Measures spread of the middle 50% of the data
 - Not sensitive to extreme values
- Standard Deviation (σ): Measures the <u>variation</u> of values from the mean
 - > Low standard deviation indicates data <u>close</u> around the mean (reliable)
 - > Larger standard deviation indicates widely spread data
 - N is replaced by n-1 (degree of freedom) in the second equation as a correction for the sample size to produce unbiased estimator
- Variance: The **square** of the standard deviation (always positive)
- Standard Error: Measures how accurately a sample mean represents the population mean
 - > Decreases (more accurate) with increasing sample size
- Five-Number Summary 'minimum, Q1, median, Q3, maximum'
 Provides a guick overview of data distribution
- Importance of Descriptive Statistics:
 - > Helps in visualizing and simplifying data for better interpretation
 - > Identifies patterns, trends, and distributions to aid in decision-making

ACADEMY ACADEMY Ological

- 🚹 Arkan academy
- 👩 Arkanacademy

🛞 www.arkan-academy.com

🕥 +962 790408805